

MUTE

Ein neues Konzept für die Elektromobilität der Zukunft

IAA 2011, Präsident der TUM, Prof. Dr. h.c. mult. Wolfgang A. Herrmann

TUM-Forschung

Exzellenzuniversität
Forschungsprogramm TUM·Energy
Interdisziplinäre Forschung

IAA 2011, Präsident der TUM, Prof. Dr. h.c. mult. Wolfgang A. Herrmann

Gesellschaftliche Verantwortung

Mitgestaltung zukünftiger Mobilitätslösungen

IAA 2011, Präsident der TUM, Prof. Dr. h.c. mult. Wolfgang A. Herrmann

Know-How

Stärkung und Ausbau der E-Mobility-Kompetenz an der TUM und bei den Industriepartnern

IAA 2011, Präsident der TUM, Prof. Dr. h.c. mult. Wolfgang A. Herrmann

Qualifikation

Forschung, Industrienahe Ausbildung und Kompetenzaufbau für Studierende

IAA 2011, Präsident der TUM, Prof. Dr. h.c. mult. Wolfgang A. Herrmann

Kooperation

Aufbau eines interdisziplinären Kompetenz-Netzwerks innerhalb der TUM und mit den beteiligten Industriepartnern

IAA 2011, Präsident der TUM, Prof. Dr. h.c. mult. Wolfgang A. Herrmann

Beteiligte Lehrstühle und Fachgebiete

Aerodynamik Prof. Adams

Bauklimatik und Haustechnik Prof. Hausladen

Carbon Composites Prof. Drechsler

Dienstleistungs- und Technologiemarketing Prof. v. Wangenheim

Forschungsgruppe Energieinformatik Dr. Sachenbacher

Elektrische Energiespeichertechnik Prof. Jossen

Energiewandlungstechnik Prof. Herzog

Energiewirtschaft Prof. Hamacher

Ergonomie Prof. Bengler

KfW-Stiftungslst. f. Entrepreneurial Finance Prof. Achleitner

Fahrzeugtechnik Prof. Lienkamp

Beteiligte Lehrstühle und Fachgebiete

Hochspannungs- und Anlagentechnik Prof. Kindersberger

Industrial Design Prof. Frenkler

Integrierte Systeme Prof. Herkersdorf

Leichtbau Prof. Baier

Maschinenelemente Prof. Höhn

Prof. Stahl

Produktentwicklung Prof. Lindemann

Prof. Shea

Technische Elektrochemie Prof. Gasteiger

Thermodynamik Prof. Sattelmayer

Umformtechnik und Gießereiwesen Prof. Volk

Wirtschaftsinformatik Prof. Krcmar

IAA 2011, Präsident der TUM, Prof. Dr. h.c. mult. Wolfgang A. Herrmann

Unterstützung

Projektpartner

C-CON

IAV

Gerg RPT

Fahrzeugaufbau

R&R Kfz

Projektförderung

Bayerische Forschungsstiftung

Sponsoren

Audiotec Fischer Michelin

Automobilscharniere Hasten Neumayer Tekfor

BBS OSRAM

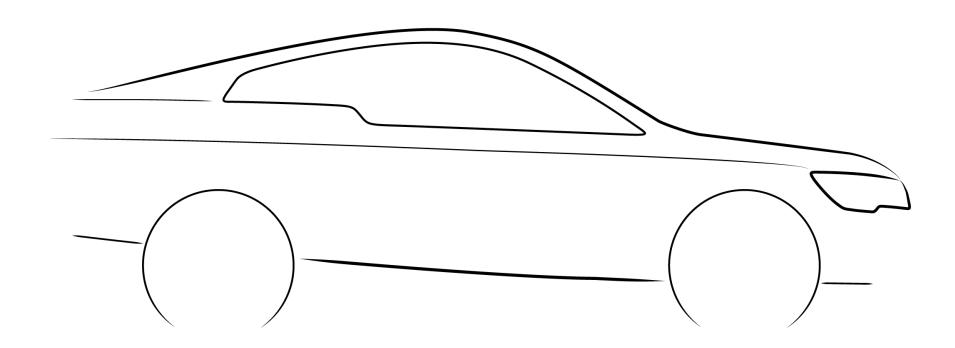
BMW PROCAD

Bund der Freunde der TUM SANYO Component Europe

Daimler SGL CARBON

Eibach Stangl & Co. Präzisionstechnik

KRAH-Unternehmensgruppe ThyssenKrupp Bilstein Suspension


Kühlerbau Schneider ThyssenKrupp Presta

LION Smart UnternehmerTUM

MENNEKES Webasto

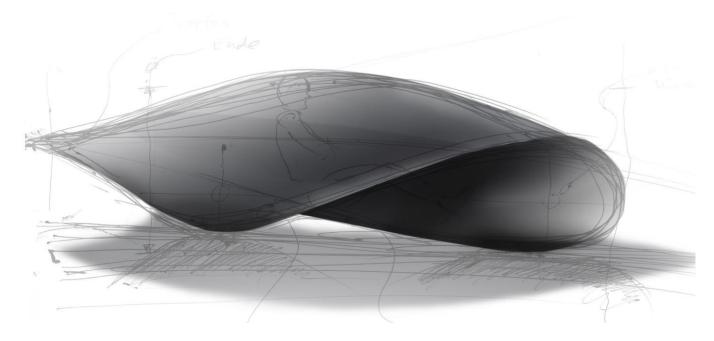
Projekt MUTE

IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

Projektziel

Elektromobilität

Effizient. Preiswert. Sicher.


IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

MUTE Idee

Innovation aus Wissenschaft und Forschung für die Entwicklung eines zukünftigen Elektrofahrzeugs nutzen.

Kundenorientierte Mobilität im urbanen Raum

IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

MUTE Kundenanforderungen

Kosten Kleinwagen mit Verbrennungsmotor

Einsatzgebiet Mobilitätsdaten Stadt und Umland fast identisch

MUTE Technische Daten

Dimensionen

Passagierzahl

Zuladung

Reichweite

Kosten vor Kunde

Markt

Zulassungsform

Höchstgeschwindigkeit

City Car

2 Personen

2 Gepäckstücke

Garantiert > 100 km

Gesamtkosten (TCO) unter heutigen Kleinwagen

.........

Mitteleuropa

L7E ("Quadklasse")

120 km/h

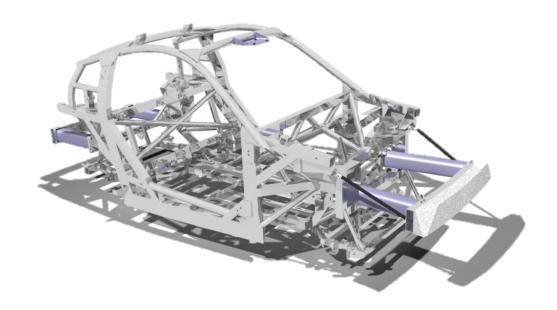
MUTE Idee

Sicher

High-end für Fahrzeugklasse (?)
Innovatives Crashkonzept
Lange Crashwege
Vernetzte Sicherheitssysteme

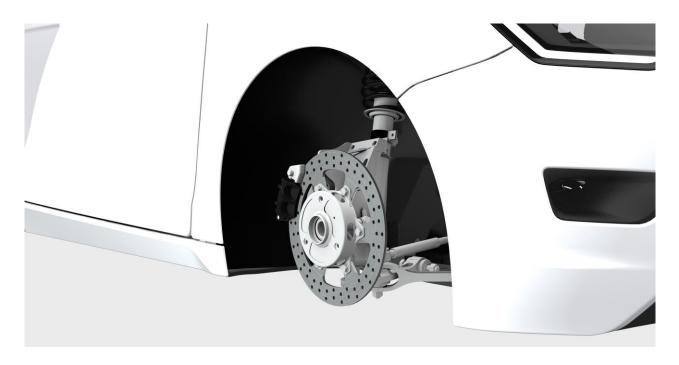
MUTE Sicherheitskonzept

Steife Fahrgastzelle
Rückhaltesysteme
CFK-Crashelemente
Torque-Vectoring-Getriebe
ESP, ACC
Vernetzung mit Infrastruktur



MUTE Fahrzeugstruktur

Steife Aluminium-Fahrgastzelle


CFK-Crashelemente zur überwiegenden Aufnahme der Crashenergie mit den Crashwegen 550 mm vorne und 450 mm hinten

MUTE Fahrwerk

McPherson v/h
Achslastverteilung v/h 45/55 Prozent
Reifen 115/70 R16
Wendekreis 8 m

IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

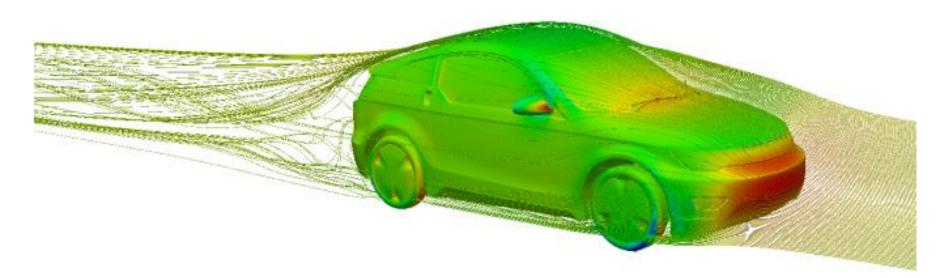
MUTE Interieur

Elektrisch bedienbare Versenkscheiben Elektrisch einstellbare Sitze Einstellbare Pedalerie

IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

MUTE Idee

Effizient


Kundennutzenorientiert 500 kg Leergewicht incl. Batterien Hoher Wirkungsgrad

MUTE Aerodynamik

c_w-Wert 0.27 Stirnfläche 1.69 m²

IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

MUTE Antriebsstrang

Synchronmotor 33 kW Maximalleistung, begrenzt auf 15 kW (Zulassung als L7e)

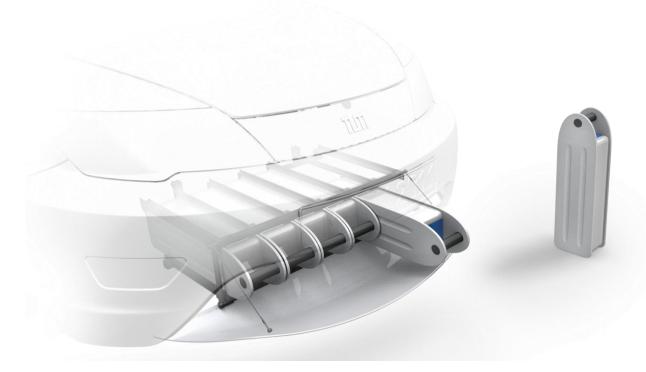
Drehmoment 60 Nm.

Torque Vectoring Getriebe verteilt die Antriebskraft stufenlos und unterstützt die Fahrdynamik Beschleunigung 0 – 60 km/h in 6,8 s Bis 2 m/s² Rekuperation

IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

MUTE Hauptakku

10 kWh Kapazität Hochenergiezellen vom Typ 18650 Aufbau in 11 unabhängigen Modulen



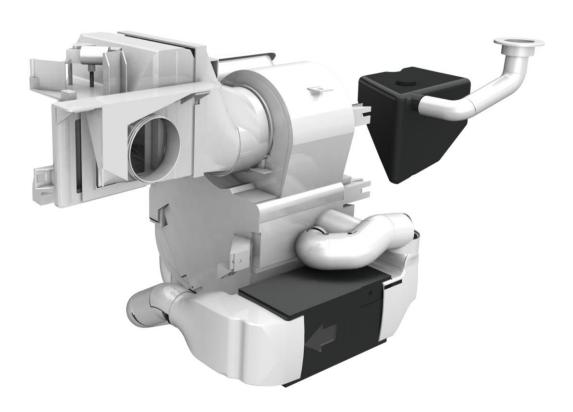
IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

MUTE Range Extender

"Reservebatterie" Mehrwegmodule dienen zugleich zur Aufnahme von Crashenergie Zink-Luft-Technologie 4 kWh Kapazität

IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

MUTE Licht


LED Scheinwerfer

MUTE Heizung

Temperierung des Innenraums und der Batterie mit einer Bioethanol-Standheizung

IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

MUTE Vernetzung

Effiziente Routenführung

bild fehlt

MUTE Idee

Preiswert

Wesentliche Kundenfunktionen Kleiner Energiespeicher Etablierte Fertigungsverfahren Verfügbare Bauweisen

MUTE Koste

Gesamtkosten für Kunde kleiner als heutiger Kleinwagen. Geringe Betriebskosten Wartungsfrei (?)

MUTE Interieur

Touchdisplay als zentrale Bedieneinheit und Infotainment

IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

MUTE Umwelt

Elektrofahrzeug

Emissionsfrei mit regenerativem Strom

42 g CO2/km bei derzeitigem Energiemix (1.8 l/100 km Benzin)

Energieaufwand für Produktion, Betrieb und Recycling 30% kleiner als bei konventionellen sparsamen Kleinwagen mit Verbrennungsmotor

MUTE Teleoperiertes Fahren

Externe Fahrzeugsteuerung möglich "Taxifahrer" steuert das Fahrzeug aus einem Operatorcenter" Rundum - Bilddaten werden übertragen

MUTE Design

Zeitlos

IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

MUTE Design

Modern

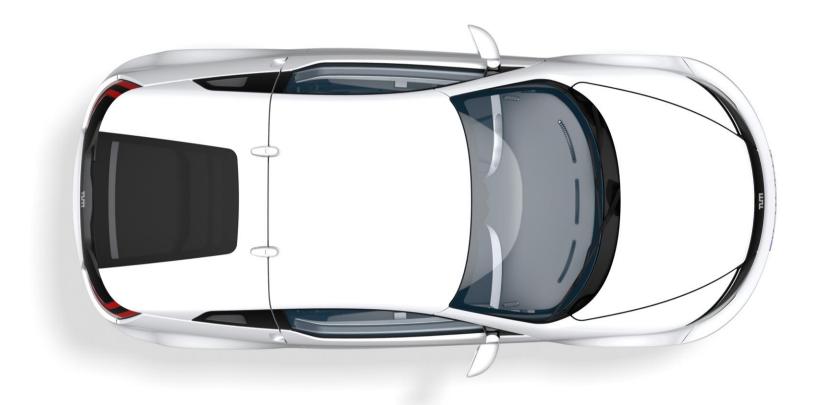
IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

MUTE Exterieur

Höhe 1.31 m

MUTE Exterior

Länge 3.55 m



IAA 2011, Ordinarius Lehrstuhl f. Fahrzeugtechnik, Prof. Dr.-Ing. Markus Lienkamp

MUTE Exterieur

Breite 1.55 m

MUTE Zukunft

Weitere Erprobung des Fahrzeugs Tests der elektrischen Systeme Prüfstandtests Testfahrten Beantragen von Förderungen

MUTE

MUTE ist der erste Schritt der Technischen Universität München ein preiswertes Elektrofahrzeug zu entwickeln.

Das Fahrzeug vereint Innovationen aus zahlreichen Forschungsbereichen der TUM.

Schwerpunkte:

Fahrzeugkonzept
Torque-Vectoring-Getriebe
Energiespeicher
Infotainment
Teleoperiertes Fahren